ENERGY ECONOMICS

Guido Pepermans, Joris Morbee, Marten Ovaere & Stef Proost

CONTENTS

15

READERS GUIDE

	APTER O	
	onomics Refresher	17
LU	biolites kertesher	17
1.	Introduction	17
2.	The market	18
	2.1 Individual demand	18
	2.2 Aggregate demand	19
	2.3 Optimal allocation of demand	20
	2.4 Individual supply function	20
	2.5 Aggregate supply	21
	2.6 Optimal allocation of supply	21
	2.7 Competitive market equilibrium	22
З.	Linear demand functions	24
4.	Market power	26
	4.1 Monopoly	26
	4.2 Imperfect competition	28
5.	Who bears the costs of taxation?	30
6.	Public goods	31
7.	External effects	32
8.	Conclusion	33
9.	Exercises	34
10.	References	34
		25
HIS	story and future of energy use	35
1.	Introduction	35
2.	Drivers of energy use and energy prices	35
	2.1 Energy use in the production sector	36
	2.2 Energy use by final consumers	39

	2.3	Main drivers of energy use	42
З.	Ene	rgy in historical perspective	43
	3.1	Income and population growth	44
	3.2	Energy use for household heating	45
	3.3	Energy use for power	47
	3.4	Price of lighting services	48
	3.5	What happened to energy prices and the price of energy services	
		over the last 700 years?	48
	3.6	Energy consumption	49
4.	Fut	ure trends	49
5.	Unc	lerstanding world energy markets	52
	5.1	Aggregate energy demand by type of energy	52
	5.2	Aggregate energy supply by type of energy	54
	5.3	Equilibrium on the energy markets	54
	5.4	Why is making scenarios for the future difficult?	55
6.	Cor	clusion	55
7.	Exe	rcises	56
8.	Refe	erences	56

CHAPTER 2

Economics of non-renewable resources

1.	Intro	oduction	59
2.	Class	sifying resources	60
З.	Opti	mal allocation of a non-renewable resource over time – the <i>N</i> period ca	ise 61
	3.1	Basic N-period model	62
	3.2	Basic N-period model with backstop	64
	3.3	Increasing marginal cost of extraction	65
	3.4	Reserve dependent costs	66
	3.5	Comparative statics of the continuous extraction problem	66
	3.6	Higher discount rate	69
	3.7	An increase in the size of the resource stock	69
	3.8	Effect of a higher marginal extraction cost	70
	3.9	Increase in the expected demand	70
	3.10	A fall in the cost of the backstop technology	71
	3.11	Interpretation of the comparative statics exercise	72
4.	The	allocation of non renewable resources in a market economy	73
	4.1	Perfect competition case	73
	4.2	Monopoly case	74
	4.3	Some more issues that arise in a market context	76

59

105

5. 6. 7. 8. 9.	Extension of the theory to recyclable exhaustible resources How does the model perform in reality? Conclusion Exercises References	77 79 80 81 81
CHA	APTER 3	
Env	vironment	83
1.	Introduction	83
2.	Basic environmental economics	83
	2.1 Problem setting	83
	2.2 Ideal (or theoretically optimal) solution	86
	2.3 Non-cooperative solution	90
	2.4 Centralized government solution	91
З.	The effect of different environmental policy instruments on market prices	
	and profits	94
	3.1 An analytical illustration for the car market	95
	3.2 Effects of different instruments on profits	100
4.	Conclusion	102
5.	Exercises	102
6.	References	103

CHAPTER 4

The energy saving gap

Introduction 105 1. 2. An investment model 106 Empirical evidence on the investment inefficiency 108 З. Engineering estimates of energy saving cost curves 3.1 109 Empirical estimates of returns on investment 109 3.2 Cost-effectiveness of energy conservation programs 110 3.3 Trade-offs between durable goods 3.4 110 Possible explanations of the energy efficiency gap 111 3.5 Policy implications 111 4. Conclusion 112 5. Exercises 112 6. References 112 7.

CHAPTER 5 Sustainability

1.	Introduction	115
2.	Sustainability as a maximum of discounted utility	115
З.	Sustainability as guarantee for utility of future generations	118
4.	Conclusion	121
5.	References	121

115

CHAPTER 6

Economics of Climate Change		
1.	Introduction	123

2.	Clin	nate change is a worldwide issue	123
	2.1	Emissions and climate	123
	2.2	The origin of GHG emissions	128
	2.3	The stock dimension of GHG emissions	129
З.	Hov	v to select a climate change strategy in an ideal world?	130
	3.1	A broader perspective	130
	3.2	What objective function to select an optimal level of reduction?	131
	3.3	Integrated assessment models to compute an optimal policy	133
	3.4	Damage of climate change	135
	3.5	Costs of emission abatement	137
	3.6	What strategy for emission reduction?	139
4.	Eco	nomics of international climate agreements	140
	4.1	The one shot game	142
	4.2	The repeated game	145
	4.3	A catastrophic climate game	145
	4.4	A way out according to economists: climate clubs	146
5.	Con	clusion	149
6.	Exe	rcises	149
7.	Refe	erences	149

CHAPTER 7

European climate change policy		
1.	Introduction	151

1.	111111		151
2.	EU	Climate change policy	151
	2.1	International negotiation strategy of the EU	151

173

	2.2	European climate policy	153
З.	A cl	oser look at the experience with the ETS in the EU	154
	3.1	The organization of the ETS system	154
	3.2	Price formation of CO ₂ permits	155
4.	A ci	itical assessment of the European climate policy	160
	4.1	The extent of the European effort	160
	4.2	The effects on the international energy markets: can a unilateral ef-	
		fort be effective?	161
	4.3	Choice of policy instruments	163
5.	Wh	ich way forward?	163
	5.1	Credibility issues	164
	5.2	A worldwide perspective on cost efficiency	165
	5.3	Technology policies	165
	5.4	Distinguishing between high rent and low rent fossil fuels	170
6.	Con	clusion	170
7.	Exe	rcises	170
8.	Refe	erences	171

CHAPTER 8

Coal

1.	Intr	oduction	173
2.	Son	ne conventions and definitions	173
	2.1	Different types of coal	173
	2.2	Units	174
	2.3	Sources of data and forecasts	174
З.	Ma	in uses, consumers, producers and trade flows	174
	3.1	Main uses	174
	3.2	Main producers and consumers	177
	3.3	Trade flows	177
4.	Ноч	w much coal is there?	177
	4.1	Proven reserves	177
	4.2	Resources	178
5.	Eco	nomics of the coal market	181
	5.1	Opening the coal sector to foreign trade	181
	5.2	Theory of comparative advantage	181
	5.3	Opening a sector to trade	182
	5.4	Coal has high transport costs	184
6.	Coa	al market operations	185
7.	Мо	delling the world coal market	187

	7.1	Perfect competition model	187
	7.2	Non-competitive models	188
8.	Hist	ory of the coal market in Western Europe	188
	8.1	Second World War – 1970	188
	8.2	From 1974-2004	189
	8.3	From 2004 onwards	190
9.	Con	clusion	191
10.	Exe	rcises	192
11.	Refe	erences	192

CHAPTER 9

Oil

1.	Intr	oduction	195
2.	Son	ne conventions and definitions	195
	2.1	The different types of oil	195
	2.2	Units	197
	2.3	Sources of data and forecasts	197
З.	Mai	n uses, consumers, producers and trade flows	197
	3.1	Main uses	197
	3.2	Consumption and main producers	203
	3.3	Trade flows	204
4.	Hov	v much oil is there?	205
	4.1	Proven reserves	205
	4.2	Resources	206
5.	Trac	ling in the oil market	208
6.	Two	Two simple models for the world oil market	
	6.1	A simple oil market model with short and long run equilibria	211
	6.2	An imperfect competition model for the oil market	214
7.	Unc	lerstanding the history of the world oil market	219
	7.1	Before 1970	219
	7.2	After 1970	221
	7.3	And the future?	226
8.	Poli	cies to stabilise or decrease oil prices	226
	8.1	Emergency and strategic stockpiles	226
	8.2	Import taxes	227
	8.3	Decreasing the oil dependency of the economy	227
	8.4	Climate change policy and the world oil market	227
9.	Pric	e formation of oil products	228
10.	Conclusion		

11.	Exercises	230
12.	References	233
CH	APTER 10	
Ga	S	235
1.	Introduction	235
2.	Some conventions and definitions	235
	2.1 Different types of gas	235
	2.2 Units	236
	2.3 Sources of data and forecasts	236
З.	Main uses, consumers, producers and trade flows	236
	3.1 Main uses	236
	3.2 Main producers	238
	3.3 Trade flows	239
4.	How much gas is there?	242
	4.1 Proven reserves	242
	4.2 Resources	244
5.	Economics of the gas market	245
	5.1 High transport costs	245
	5.2 The hold-up problem for specific transport infrastructure	246
	5.3 Price discrimination	247
	5.4 Netback pricing of natural gas and take or pay contracts	247
	5.5 A Cournot equilibrium	248
6.	History of the gas market in Western Europe	249
	6.1 Before 1973	249
	6.2 From 1974-2004	250
	6.3 Since 2004	252
7.	Modelling the European gas market	253
	7.1 Structure of the model	253
	7.2 Downstream: behavior of traders	254
	7.3 Upstream: behavior of producers	256
	7.4 Empirical specification	258
8.	The security of European gas supply	262
	8.1 Introduction	262
	8.2 Transporting Russian gas to Europe	263
	8.3 How to deal with unreliable Russian gas supply?	264
	8.4 Will the development of shale gas contribute to the security of gas	
	supply in Europe?	268
9.	Conclusion	269

10.	Exe	rcises	270
11.	Refe	erences	271
	PTER	re of Electricity markets	273
501	ictui	e of Electricity markets	275
1.	Intr	oduction	273
2.	Son	ne conventions and definitions	274
З.	Mai	n uses, consumers, producers and trade flows	274
	3.1	Main uses	274
	3.2	Electricity consumption	275
	3.3	Electricity generation by fuel	275
	3.4	Trade flows	276
4.	Elec	tricity liberalization	276
	4.1	Structure of the electricity network	276
	4.2	Electricity liberalization	277
5.	Elec	ctricity market design	281
	5.1	Level 1: Degree of liberalization	281
	5.2	Level 2: The existence of different markets	283
	5.3	Level 3: The design of individual markets	287
6.	Elec	tricity market design in the European Union	287
	6.1	The energy law-making process in the European Union	287
	6.2	The European Target Electricity Model	288
	6.3	Current state of the European Target Electricity Model	291
7.	Elec	tricity market design in the United States	292
	7.1	Liberalized and integrated regions	292
	7.2	Different operating models	293
8.	Con	clusion	294
9.	Refe	erences	294

CHAPTER 12 Electricity Economics

297

1.	Intr	oduction	297
2.	Gen	eration	297
	2.1	The cost of different generation technologies	297
	2.2	The revenues of different generation technologies	299
	2.3	Optimal investment in generation technologies	302
	2.4	Optimal pricing and investment in generation capacity	305

	2.5	Average-cost pricing vs. real-time pricing	313
	2.6	Summary	316
З.	Trar	ismission	316
	3.1	Graphical analysis	316
	3.2	Numerical illustration	318
4.	Gen	eration and transmission	321
	4.1	Optimal locations for generation and consumption	321
	4.2	Numerical illustration	324
5.	Con	clusion	326
6.	Exercises		326
7.	Refe	rences	328

CHAPTER 13

Ren	ewat	les	329	
1.	Intro	duction	329	
2.	Renewable generation in the world			
З.	Different renewable technologies			
4.	Model of an electricity sector with CO ₂ -reducing policies			
	4.1	Theoretical model	335	
	4.2	Policies considered	340	
	4.3	Optimal policy	345	
	4.4	Calibration of the model for the US electricity sector	345	
	4.5	Evaluation of the model	350	
5.	Euro	pean union renewables policy	351	
	5.1	European renewable energy directive	351	
	5.2	Choice of policy instruments	352	
	5.3	Case study: How cost-effective is green power support in Germany?	353	
	5.4	Technological change	354	
	5.5	Why focus on a specific target for renewable energy?	355	
	5.6	Which way forward for the EU?	357	
6.	Cond	clusion	358	
7.	Exer	cises	359	
8.	References			

CHA	PTER	14	
Ele	ctrici	ty economics with renewables	363
1.	Intro	oduction	363
	1.1	Intermittent versus dispatchable generation	364
	1.2	Unforecastable versus forecastable intermittency	364
	1.3	Security versus adequacy	365
2.	Basi	c model of generation investment	366
	2.1	Total cost curves	366
	2.2	Residual load duration curve	367
	2.3	Price duration curve	368
З.	The	effect of intermittent renewables	370
	3.1	The effect on the residual load duration curve	370
	3.2	The effect on the price duration curve	371
	3.3	The effect on conventional generation capacity	372
	3.4	Commissioning and decommissioning of power plants in Europe	
		and the US	375
4.	Dec	reasing the cost of intermittency	375
	4.1	Combining renewable technologies	375
	4.2	Storage	376
	4.3	Demand response	378
5.	Valu	e of intermittent renewables	379
6.	Investment in intermittent renewables		382
7.	Exer	rcises	385
8.	Refe	rences	385

ACKNOWLEDGEMENTS	387

NOTES		389