
Part I
Basic Concepts

Computer programs always operate on data. That data can take many different forms. 
Examples are numerical data operated on by a software system to compute taxes, textual data 
operated on by a word processor, and graphical data operated on by an application for cor-
recting images. In this part, we learn how computer programs can operate on integer num-
bers, on broken numbers referred to as floating-point numbers, and on sequences of symbols 
referred to as strings of characters. Programming languages typically offer built-in support 
for these basic types of data.

In this part, we learn how to write simple programs that consist of basic instructions to 
read input data, to store data in memory, and to print computed results. We also learn to use 
conditional statements and iterative statements to steer the flow of control, i.e. the actual se-
quence of instructions to be executed by the machine. Conditional statements serve to choose 
between several alternative sequences of instructions based on the current data. Iterative 
statements make it possible to execute the same sequence of instructions over and over again 
on slightly changing data.

Computers are not able to execute programs written in Python, C++, Java, C# or any other 
programming language. Some programming languages such as C++ come with a so-called 
compiler that translates programs into machine code. Other programming languages such 
as Python, Java and C# offer a so-called interpreter to execute their programs. An interpreter 
is another computer program specifically developed to execute programs written in a certain 
programming language.





Chapter 1
Integer Arithmetic

Learning outcomes

Write documentation in a structured way.

Read data input from end-users.

Store intermediate results of computations in variables.

Compute with integer numbers.

Influence the flow of control by means of selection statements.

Communicate final results of computations to end-users.

1.1 Example Program
In this chapter, we discuss Python concepts for computing with integer numbers. Our illus-

tration is a program that reads a year and determines whether or not that year is a leap year. A 
year is a leap year if it is a multiple of 4 and not a multiple of 100, or if it is a multiple of 400. For 
example, 2012 is a leap year, whereas 2011 is not. The year 2000 is also a leap year, because it 
is a multiple of 400. The year 2100, on the other hand, is not a leap year. It is a multiple of 100, 
and not a multiple of 400. Example 1 shows the entire Python program for this problem. We 
explain it in detail in the course of this chapter:
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# Check whether a given year is a leap year.
#   A year is a leap year if it is a multiple of 4 and
#   not a multiple of 100, or it is a mutiple of 400.
#
# Author: Eric Steegmans
# Date: September 2016

year = int(input(“Enter the year to examine: “))

is_4_multiple   = (year % 4 == 0)
is_100_multiple = (year % 100 == 0)
is_400_multiple = (year % 400 == 0)

if is_4_multiple and \
     ( (not is_100_multiple) or is_400_multiple):
  print(“The year”, year, “is a leap year!”)
else:
  print(“The year”, year, “is not a leap year!”)

Example 1: Program to determine whether a year is a leap year.

1.2 Computer Program
A computer program is a series of instructions that can be executed by a computer. A 

program is written to perform a specific task. A simple example is a computer program to 
calculate the greatest common divisor of two integer numbers. A more complex example is a 
program to compute the shortest route from one location to another. When things get even 
bigger, we talk about software systems that consist of a collection of computer programs.

A computer program typically involves input and output. The keyboard is the default instru-
ment to supply data to a computer program. We say that the standard input stream for a com-
puter program is connected to the keyboard. In the simple example of the program to compute 
the greatest common divisor, the end-user enters two integer numbers using the keyboard. The 
computer program reads these numbers, and computes their greatest common divisor. The 
keyboard is just one device used to provide input data. Computer programs can get data from 
many other devices, such as a network connection, a hard disk, a computer mouse or a joystick.

The computer screen is the default instrument to present results that have been computed 
by a program. We say that the standard output stream for a computer program is connected 
to the computer screen. In the example of the greatest common divisor, the program displays 
the greatest common divisor of the given integer numbers on the computer screen. Again, 
there are many other devices that computer programs can use to communicate their results. 
Examples include network connections, hard disks and printers.
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Computer programs are written in a programming language. In this book, we use Python 
as the language in which we write all our programs. Examples of other popular program-
ming languages are Java, C#, C++ and Scala. Computers themselves have a very primitive 
set of machine instructions that they can execute. In the early days of computing, programs 
were written directly in machine code. However, high-level programming languages offer-
ing higher- level concepts were soon introduced to simplify the process of writing programs. 
High-level programming languages also made it possible to write more complex computer 
programs dealing with more complex problems. In his famous book The Mythical Man-Month, 
Fred Books states that a software engineer is able to write 10 lines of (correct) code per day, 
regardless of the level of the programming language.

Programs written in high-level programming languages must either be translated into 
machine code, or there must be some other instrument that is able to execute them. Trans-
lating computer programs written in a high-level programming language into machine code is 
known as compilation. A compiler not only translates the program in question. It also checks 
whether the program has been written according to the rules of the programming language. 
Nowadays, most computer programs are interpreted. An interpreter is an application (a com-
puter program) specifically developed to execute computer programs written in some pro-
gramming language. Prior to the actual execution of the program, the interpreter may check 
its correctness. Python, Java and C# all use an interpreter to execute their programs. C++ still 
sticks to a compiler.

1.3 Documentation
Readability is a basic requirement for programs written in any programming language. Pro-

grams we write must be easy to understand for others. Proper naming of all the ingredients of 
a program makes programs a lot easier to read. Functions and variables are such ingredients, 
and we discuss them in the initial chapters of this book. Suppose we must write a program that 
needs to store the amount of money held on a bank account. If we name the variable that we 
introduce for that purpose balance, the reader can guess the intention of that variable from 
the name. If we were to use names such as b or bl, it would be a lot harder to guess their role 
in the program. Another example: suppose we want to devise a function to compute the total 
cost of some financial transaction. Naming that function total_transaction_cost immediate-
ly reveals its purpose. Shorter names such as ttc or tr_c would be mysterious for the reader.

Proper naming of variables, functions and other ingredients is not enough to make pro-
grams easy to read. At specific points, we must add comments concerning the program. 
These might be a description of the overall goal of some ingredient. They might also clarify 
the way the program computes certain things. Programming languages offer programmers 
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comments to add additional information wherever needed. Those comments are written in 
some natural language such as English or Dutch. In Python, comments start with the symbol # 
and proceed up to the end of the line. The symbol # is called the number sign or the hash. Com-
ments are just there to give information to the readers of programs. They have no impact at all 
on the ultimate results that programs produce. In executing programs, the Python interpreter 
simply skips all the comments it encounters.

A program typically starts with a brief description of its overall purpose. The brief descrip-
tion at the start of Example 1 reveals that the program is intended to check whether a given 
year is a leap year. Subsequent lines may give some more details concerning the program. In 
that example, the next two lines describe the conditions for a given year to be a leap year. The 
general information concerning a program typically finishes with some administrative stuff. In 
the example, the comment in front of the leap year program lists the author of the program 
and the date it was last modified. We will not include that type of information in examples in the 
rest of this book.

1.4 Input
Python provides a large collection of predefined functions that we can use in our pro-

grams. Some of these functions are part of the language itself. These so-called built-in func-
tions provide functionality that we need in lots of programs. Examples are functions to read 
data, to print data and to compute the absolute value of some number. Other functions are 
offered as part of modules that we can import into our programs whenever we need them. 
The Python standard library provides a large collection of library functions organized in mod-
ules. Examples are the module math, which includes mathematical functions such as facto-
rial(n), sin(x) and log(x), and the module datetime, which comprises date and time func-
tions such as today(), time() and date(year,month,day). In Chapter 5, we discuss how we 
can define our own functions. They cover needs that are specific to the program in question.

Python provides the built-in function input(prompt) to read data from the standard input 
stream. This function takes a string as its argument. We discuss the semantics of strings in 
much more detail in Chapter 4. For the time being, it is sufficient to know that a string in Python 
is a sequence of characters enclosed in single quotes (‘) or in double quotes (“). For example, 
‘Leuven’ is a string. Other examples of strings are “Celestijnenlaan 200”, ‘John.Carter@
gmail.com’ and ‘#k&!]’.

The function input(prompt) displays the prompt. This tells users what kind of data they need 
to supply. The function then reads the characters that the user has entered in response to the 
prompt, and returns them in the form of a string. Experiment 1 below shows some experiments 
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with the built-in function input. The first experiment shows that the function returns a string 
that contains all the characters that have been entered by the user. The second experiment il-
lustrates that the function itself does not try to transform the sequence of characters into some-
thing else. In that experiment, the function does not return the integer number 23. It returns a 
string consisting of the characters ‘2’ and ‘3’. The third experiment shows that users should 
not enclose their response in quotes. In the experiment, the user enters his name enclosed in 
double quotes. Those quotes are part of the string the built-in function input returns as its result:

>>> input(“Enter something: “)
Enter something: hello 42 out %there%
‘hello 42 out %there%’

>>> input(“Enter an integer: “)
Enter an integer: 23
‘23’

>>> input(“Enter your name: “)
Enter your name: “Steegmans”
‘”Steegmans”’

Experiment 1: The built-in function input.

Example 1 shows how to read the year under examination. The program prompts the user 
to enter the year. It then waits for the user to enter an integer number. The string returned by 
the built-in function input is then transformed into an integer number by means of the built-in 
function int. That number is then assigned to the variable year. The next section discusses the 
semantics of assignment statements in Python. The semantics of the built-in function int are 
discussed in more detail in section 1.7. The program assumes that the user will enter values of 
the correct type. It will probably crash at some point if the user supplies unsuitable inputs. For 
example, if the user supplies two thousand seventeen as the year for testing, the program will 
crash giving a rather curious message (try it out!).

1.5 Assignment Statement
The programs that we work through in the initial chapters of this book are very simple. 

They easily fit onto a single page. Later chapters use more complex programs to illustrate 
more advanced concepts. In practice, software systems are much more complex and may 
require hundreds of man-years of work. A man-year is the amount of work one person can 
do in a single year composed of a standard number of working days. Obviously, complex soft-
ware projects are developed by large teams that may consist of dozens or even hundreds of 
software engineers.



8 Chapter 1: Integer Arithmetic

Regardless of their complexity, programs must be able to store intermediate results. Pro-
gramming languages offer variables to which values can be assigned during the execution 
of programs. It is handy to think of variables as named boxes in which we can store a single 
piece of information, such as an integer number, a floating-point number, or a string. We can 
inspect the contents of a variable via its name, and we can change its contents by storing other 
information in the box.

1.5.1 Basics of assignment statements

In its most simple form, an assignment statement in Python involves the name of a variable 
on the left and an expression on the right. The sides are separated from one another by means 
of the assignment operator (=). Basically, the value of the expression on the right is evaluated 
and then assigned to the variable on the left. Using the box metaphor, the value resulting from 
the evaluation of the expression is stored in the box associated with the variable in question. If 
the variable does not yet exist, it comes into existence as a result of the execution of the assign-
ment statement. In other words, if the variable does not already exist, a new box named after 
the variable is created. If, on the other hand, a value has already been assigned to the variable, 
the new value replaces the old value. In other words, the old content is removed from the box 
associated with the variable, and the new value is stored in that box.

For the moment, we are only going to use simple expressions involving a single variable, 
constant or function. In section 1.6, however, we learn how to write more complex expressions 
involving operators that are applied to operands. Experiment 2 below shows examples of sim-
ple assignment statements. In the first assignment, the value 42 is assigned to a variable named 
magic. Assuming no variable named magic has been assigned before, the variable comes into 
play and its contents can be inspected from this point on. In Experiment 2 below, we ask for the 
value of the variable magic by simply typing its name after the assignment statement has been 
executed. Python evaluates this simple expression and returns its value, 42 in this case. The 
experiment continues with similar assignments involving floating-point numbers and strings:

>>> magic = 42
>>> magic
42

>>> price = 79.95
>>> price
79.95

>>> message = “Hello from Flanders!”
>>> message
‘Hello from Flanders!’

Experiment 2: Assignment statements.
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1.5.2 Classification of errors

The programs that we write will not always be immediately correct. We distinguish be-
tween syntax errors, runtime errors and semantic errors in programs. Python defines a 
particular syntax for each of its constructs. Whenever we ask to execute a program, Python 
checks whether the program is syntacticly correct. If it is not, Python signals the syntax error 
and refuses to execute the program. In Experiment 3 below, the first line of code illustrates the 
notion of a syntax error. We have typed a colon instead of an equal sign to separate the variable 
on the left of the assignment statement from the expression on the right. Python signals the 
syntax error by means of an arrow pointing to the unexpected character.

Programs that are syntacticly correct may fail during their execution. Such errors are typ-
ically called runtime errors. Experiment 3 below also shows a runtime error. Here, we try to 
assign the value of a variable b to another variable a. However, the variable b has not been 
assigned yet. The Python interpreter starts to execute the program, but stops as soon as it 
encounters the faulty assignment statement. Note that Python classifies errors in various cat-
egories, such as SyntaxError, ZeroDivisionError and NameError.

The final types of errors are semantic errors. They are by far the hardest to find. Here the 
program in question is syntacticly correct. Moreover, the execution of the program does not 
terminate with a runtime error. However, the results produced by the program in question are 
not as expected. For example, suppose we have written a program to compute the greatest 
common divisor of two natural numbers. If we execute the program to compute the greatest 
common divisor of 12 and 81, an incorrect program might return 6, which is obviously incor-
rect. Another example: we write a program to calculate the square root of some number, but 
when we execute it, it never stops. Such programs are said to be in an infinite loop:

>>> a : 42
      ^
SyntaxError: invalid syntax

>> a = b
NameError: name ‘b’ is not defined

Experiment 3: Syntax errors and semantic errors.

1.5.3 Semantics of assignment statements

The semantics of assignment in Python are a bit more complicated than simple boxes in 
which we store values. To get a deeper understanding of the semantics of assignment in Py-
thon, we need to know that Python programs have access to the computer’s central memory 
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for storing pieces of information. 
The central memory is a large col-
lection of memory cells. Each cell 
has a unique address. Python re-
fers to consecutive memory cells 
storing some piece of information 
as objects. Objects can store sim-
ple values such as integer numbers, 
floating-point numbers or strings. 
However, objects can also store 
more complex things such as lists, 
tuples, sets and dictionaries, which 
we discuss in the following chapters. The notion of an object stems from the paradigm of ob-
ject-oriented programming that we discuss in Chapter 18. That paradigm introduces classes 
from which objects can be created. A typical example is a class of bank accounts. Objects be-
longing to that class may store the balance, the credit limit and the holder. Whatever its actual 
type, the evaluation of an expression in Python always results in an object in which the value of 
the expression in question is stored.

In Python, a single memory cell is assigned to each of the variables used in the program 
under execution. That cell does not directly store the value assigned to that variable. Instead, it 
stores the address of the object in which the actual value is stored. Figure 1 illustrates the bind-
ings of variables for the code snippet shown below. In the first assignment statement, the val-
ue -300 is assigned to variable a. If this statement is executed, the Python interpreter allocates 
a memory cell for variable a. In the example, we assume that the evaluation of the right-hand 
side of the assignment yields a new object at address 10024 in which the value -300 is stored. 
The assignment in question then stores the address 10024 in the cell assigned to variable a.

We will not consistently provide addresses of memory cells in graphical illustrations in this 
text. Instead, we use arrows that point to the memory cells storing the value. In Figure 1, both 
addresses and arrows are shown to emphasize their equivalence. We say that the variable in 
question references (or points to) the memory cells (the object) storing its value. In Python 
terminology, variable a references an object that stores the integer value -300.

The next assignment in the code snippet below assigns the contents of variable a to an-
other variable, b. The execution of the statement allocates another memory cell to variable b. 
This time, no new object needs to be created to store the result of the expression on the right 
of the assignment statement. Evaluation of the expression simply yields the address 10024 of 
the object referenced by variable a. By storing that address in the memory cell allocated to 
variable b, both variables a and b reference the same object. We say that these variables share 
the same object.

10024
10024

300

45010024

10028

10028

a

b

c

Figure 1: Semantics of simple assignments.
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In the last assignment, variable c is assigned the value 450. The execution of this statement 
assigns yet another memory cell to variable c. That cell stores the address 10028 of a newly 
created object in which the value 450 is stored:

a = -300
b = a
c = 450

Python provides the operator is to check whether or not different expressions reference 
the same object. The operator relates an expression on the left to an expression on the right. It 
checks whether the objects resulting from the evaluation of the expressions are the same on 
both sides. In other words, the operator checks whether the addresses at which the resulting 
objects are stored are identical. The operator is either returns True or False. These values are 
part of Python’s built-in type bool that we discuss in subsection 1.7.1.

Experiment 4 below shows some examples of expressions involving the operator is. From 
Figure 1 it is clear that the variables a and b reference the same object, whereas the variables 
a and c clearly do not. The variables x and y near the end of Experiment 4 below do not refer-
ence the same object. The value 10000 resulting from the expression on the right of the assign-
ment to the variable x is stored in a new object. The value 10000 resulting from the expression 
on the right of the assignment to the variable y is stored in another new object. We say that the 
variables x and y reference different objects with the same content. The first part of Figure 2 
illustrates this.

For small integer values, Python has pre-allocated objects storing their values. In the cur-
rent version of Python, this is the case for all integer values in the range -5 .. 256. Expres-
sions yielding such small integer values do not store their value in a newly allocated object. In-
stead, they re-use one of the pre-allocated objects. In Experiment 4 below, the value resulting 
from the evaluation of the right-hand side of the assignment to the variable i1 is a small inte-
ger value. The variable i1 therefore 
references the pre-allocated object 
storing the value 10. The evaluation 
of the expression on the right of the 
assignment to the variable i2 yields 
the same small integer value. The 
variable i2 therefore also referenc-
es the pre-allocated object storing 
the value 10. Both variables there-
fore reference the same object, as 
illustrated in Figure 2, and as evi-
denced by the result of the expres-
sion i1 is i2:

10000
x

y

i1

i2

10000

10

Figure 2: Semantics of the operator is.
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>>> a = -300
>>> b = a
>>> a is b
True

>>> c = 450
>>> a is c
False

>>> x = 10000
>>> y = 10000
>>> x is y
False

>>> i1 = 10
>>> i2 = 10
>>> i1 is i2
True

Experiment 4: The operator is.

1.5.4 Style guide for naming variables

We have already mentioned that programs must pay proper attention to the names of 
variables they use. The name of each variable should reflect as well as possible the value it is 
intended to store. Programming languages also use style guides in spelling various kinds of 
ingredients. In this course, we follow the Google style guide for Python. For naming variables, 
the Google style guide suggests using only lower-case letters. If a name consists of several 
words, an underscore (_) separates successive words. Examples of variable names that satisfy 
the Google style guide are balance, savings_account and library_members.

The program in Example 1 to check whether a given year is a leap year stores the year to 
be examined in the variable year. An object storing that value is returned as the result of the 
invocation of the built-in function int on the string returned by the built-in function input.

1.6 Built-in Types
Programs must be able to compute with different types of data. Some types of data are 

needed in almost all programs. Examples are integer numbers, broken numbers and strings. 
Programming languages offer built-in types to support computations with such frequently oc-
curring types of data. For other types of data, programmers may define classes, as we discuss 
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in Chapter 18. A built-in type defines a collection of values complemented with functions and 
operators to compute with elements of that collection. A function takes some values of that 
type and delivers a result. We have already studied the built-in function input to read input. 
Another example is the built-in function abs(x) that takes a numerical value x and returns its 
absolute value. An example of an operator is the operator + that returns the sum of the value of 
its left-hand operand and the value of its right-hand operand.

1.7 Integer types
Python provides the built-in type int to compute with integer numbers. This type defines 

an unlimited collection of integer numbers and provides both positive and negative values of 
unlimited size. Apart from writing integers in the decimal representation that we are used to, 
Python provides the ability to write integer constants in binary, octal and hexadecimal rep-
resentation. Computers use binary representation for integer numbers, because hardware 
switches inside computers only have two states. We discuss the various representations for 
integer numbers below. Python further provides an extended set of operators to compute with 
integer numbers. We also discuss all of them in this subsection.

Integer literals

Integer constants that we directly write in programs are called integer literals. We literally 
write the value of an integer into the program text, hence the term “integer literal”. We custom-
arily write integer values with a decimal base, i.e. with base 10. An integer constant in that base 
consists of a sequence of digits ranging from 0 to 9. The value of the integer literal dndn-1…d2d1d0 
in decimal is obtained as dn*10

n + dn-1*10
n-1 + … + d2*10

2 + d1*10
1 + d0*10

0. For example, the 
value of the integer 157 is obtained as the sum 1*100+5*10+7.

Experiment 5 below shows some integer literals in decimal. Note that integer literals may 
start with a sign. Except for small integer values, the evaluation of each integer literal that oc-
curs in a Python program results in a new object that stores the value of the literal. That object 
can then be assigned to a variable, as illustrated in section 1.5. Objects that store integer values 
can also be used as operands of an arithmetic operator or as arguments of a function. We 
discuss this functionality at the end of this subsection.

Python also supports writing integer literals as binary, octal and hexadecimal numbers. A 
binary number uses 2 as its base. A binary literal starts with an optional sign followed by one of 
the markers 0B or 0b. It further consists only of the digits 0 and 1. In computer science, binary 
digits are called bits. In fact, a bit is the smallest possible carrier of information. It can only 
have two values, represented as 0 and 1, as low and high, as on and off, etc. The value of the 
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binary literal 0Bdndn-1…d2d1d0 is obtained as dn*2
n + dn-1*2

n-1 + … + d2*2
2 + d1*2

1 + d0*2
0. For 

example, the value of the binary literal 0B10101 is obtained as the sum 1*16+0*8+1*4+*0*2+1.

Experiment 5 below shows some binary literals. Note that the Python shell always shows 
the value of integer literals in decimal, regardless of the base in which they have been written.

An octal number uses 8 as its base and the digits 0, 1, …, 7. In Python, an octal literal starts 
with an optional sign followed by one of the markers 0O or 0o, followed by a sequence of octal 
digits. The value of the octal literal 0Odndn-1…d2d1d0 is obtained as dn*8

n + dn-1*8
n-1 + … + d2*8

2 + 

d1*8
1 + d0*8

0. For example, the value of the octal literal 0O371 is obtained as the sum 3*64+7*8+1.

Experiment 5 below shows some octal literals in Python. In version 2 of the language, octal 
literals just started with a zero. For example, the literal 047 is an octal literal in Python 2 with 
value 4*8+7. This is rather confusing because it is easy to misunderstand the literal as the dec-
imal literal 47. Python 3 therefore changed the way octal literals must be spelled. In order to 
avoid any further confusion, decimal literals involving more than 1 digit may not start with a 
zero. Experiment 5 below illustrates that the decimal literal 047 is no longer valid. The literal 0, 
on the other hand, is still a valid decimal literal.

A hexadecimal number uses 16 as its base. A hexadecimal literal starts with an optional 
sign followed by one of the markers 0X or 0x. Because we need 16 digits, hexadecimal literals 
use the digits 0, 1, …, 9 extended with the letters A or a (value 10), B or b (value 11), …, F or f (value 
15). The value of a hexadecimal literal 0Xdndn-1…d2d1d0 is obtained as dn*16

n + dn-1*16
n-1 + … + 

d2*16
2 + d1*16

1 + d0*16
0. For example, the value of the hexadecimal literal 0XA1 is obtained as 

the sum 10*16+1. Experiment 5 below shows some hexadecimal literals.

Python also provides the built-in function int to convert a given value to an integer value. In 
its simplest form, the function just takes an integer number, a floating-point number or a string 
as its argument. If a floating-point number is supplied, the conversion truncates towards zero. 
We discuss floating-point numbers in more detail in Chapter 2. If a string is supplied, it must 
be an integer literal, as they can occur directly in Python code. In a more extended form, the 
function int may involve a base that follows the string to be converted. In that case, the string 
must be an integer literal in the given base. The base can be any value in the range 2 to 36. The 
letters a to z represent digits with values 10 to 35. Literals in base 2, 8 or 16 may be, but are 
not obliged to be, prefixed respectively with 0b/0B, with 0O/0o, or with 0x/0X. If the function 
int cannot convert its input to an integer value, it raises a runtime error of type ValueError. 
Experiment 5 below shows some experiments with the built-in function int.

We can check whether a particular value is of a particular type by means of the built-in 
function isinstance. This function takes the value to be checked as its first argument, and the 
type as its second argument. It always returns a Boolean value. Experiment 5 below shows 
some experiments with the built-in function isinstance. In Python, int stands for the integer 
type; str stands for the string type:
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# Decimal literals
>>> 423
423
>>> -78945
-78945
>>> +5
5
>>> 0
0

# Binary literals
>>> 0B101101
45
>>> -0b1100
-12

# Octal literals
>>> 0O47
39
>>> -0o14
-12
>>> 047
    ^
SyntaxError: invalid token

# Hexadecimal literals
>>> 0X3A
58
>>> -0xf0
-240

# Built-in function int
>>> int(24.56)
24
>>> int(“251”)
251
>>> int(“13”,8)
11
>>> int(“1g”,20)
36

# Built-in function isinstance
>>> isinstance(100,int)
True
>>> isinstance(“13”,int)
False
>>> isinstance(100,str)
False

Experiment 5: Integer literals.
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Integer operators

Python provides the binary additive operators + and -. When both operands of an additive 
operator are integer values, the resulting value is also an integer value. The addition operator 
(+) yields the sum of its left- and right-hand operands. The subtraction operator (-) yields the 
difference between its left- and right-hand operands. The additive operators associate from 
left to right. This means that a+b+c is equivalent to (a+b)+c. Experiment 6 below starts with an 
expression involving additive operators.

Python also provides the binary multiplicative operators *, /, // and %. The multiplication 
operator (*) yields the product of its left- and right-hand operands. The multiplication operator 
yields an integer if both its operands are integer numbers. Python provides the division oper-
ator (/) and the floor division operator (//). The division operator always yields a non-rounded 
quotient represented as a floating-point number, regardless of whether or not its operands 
are integer numbers. For example, 10/4 yields 2.5 and 10/-4 yields -2.5. The floor division 
operator yields the quotient of the division of its left-hand integer operand by its right-hand 
integer operand rounded down to the nearest integer value. If both the left- and right-hand op-
erand of the floor division operator are integer numbers, the resulting value is also an integer 
number. For example, the expressions 10//3 and -10//-3 both yield 3; the expressions -10//3 
and 10//-3 both yield -4. Division by zero results in a runtime error of type ZeroDivisionError.

The modulo operator (%) yields the remainder of the division of its left-hand oper-
and by its right-hand operand. If the right-hand operand is zero, a runtime error of type 
ZeroDivisionError is raised. The modulo operator always yields a result with the same sign 
as its right-hand operand (or zero). Moreover, the absolute value of its result is smaller than 
the absolute value of its left-hand operand. The integer floor division and modulo operators 
are connected by the relationship x == (x//y)*y +(x%y). For example, 20%7 yields 6, -20%-7 
yields -6, -20%7 yields +1 and 20%-7 yields -1. The multiplicative operators associate from left 
to right. This means that a*b/c is equivalent to (a*b)/c. Multiplicative operators have a higher 
priority than the additive operators. This means that a+b*c is equivalent to a+(b*c). Experi-
ment 6 below shows some expressions involving multiplicative operators.

Python also provides the unary operators + and -. Unlike binary operators, unary opera-
tors only involve a single operand. The unary operator + has no effect. When applied to a value, 
it yields the same value. The unary operator – yields the negation of the value to which it is ap-
plied. The unary operators + and – have a higher priority than binary multiplicative operators. 
This means that –a*b is equivalent to (-a)*b. Experiment 6 below shows some expressions 
involving the unary operators + and -.

The power operator ** yields its left-hand operand raised to the power specified by its 
right-hand operand. If the left-hand operand is an integer value, and the right-hand operand 
is a non-negative integer value, the resulting value is an integer. For example, 3**2 yields 9 and 
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(-3)**3 yields -27. If the left-hand operand is an integer value, and the right-hand operand is a 
negative integer value, the resulting value is a floating-point value. The value of a**-b is always 
equal to 1.0/(a**b). For example, 2**-3 yields 0.125 and (-2)**-2 yields 0.25. Raising 0 to a 
negative power results in a runtime error of type ZeroDivisionError. The power operator has 
a higher priority than the unary operators – and + to the left of the power operator. This means 
that –a**b is equivalent to –(a**b). The power operator has a lower priority than the unary op-
erators to its right. This means that a**-b is equivalent to a**(-b). Experiment 6 below shows 
some expressions involving the power operator.

Comparison operators serve to compare two integer values. Python provides equality (==) 
to check whether its left operand has the same value as its right operand, inequality (!=) to 
check whether its left operand has a different value than its right operand, less than (<) to 
check whether its left operand has a smaller value than its right operand, less than or equal 
(<=) to check whether its left operand has a smaller or equal value than its right operand, 
greater than (>) to check whether its left operand has a greater value than its right operand, 
and greater than or equal to (>=) to check whether the value of its left operand is greater than, 
or equal to, that of its right operand. The result of a comparison operator is one of the Boolean 
values True or False. Comparison operators have a lower priority than additive operators. 
This means that 3+4<6+7 is equivalent to (3+4)<(6+7). Experiment 6 below shows some ex-
pressions involving comparison operators.

Python provides augmented versions of assignment. They combine the semantics of op-
erators applicable to integer values with the semantics of assignment. In particular, an aug-
mented assignment consists of the name of a variable on the left, an expression on the right, 
and one of the augmented assignment operators +=, -=, *=, /=, //=, %= or **= in between. At this 
point, we assume that both the current value of the variable on the left and the value resulting 
from the evaluation of the expression on the right are integer values. The current value of the 
variable on the left then acts as the left-hand operand of the operator involved in the augment-
ed assignment operator. The expression on the right acts as the right-hand operand. The re-
sulting value is then registered as the new contents of the variable on the left. In other words, 
a statement in the form x q= y, where q denotes some operator, is equivalent to the more ex-
panded statement x = x q y. Experiment 6 below ends with some augmented assignments:

# Additive operators
>>> 24+30-7
47

# Multiplicative operators
>>> 20+3*7*2
62
>>> -20//6-3*4//5
-6
>>> -20//6*6+-20%6
-20
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# Unary operators
>>>+20*---5
-100

# Power operator
>>> -4**2 + (-4)**(-2) + 0**0
-14.9375

# Comparison operators
>>> 3 < 4-3
False
>>> 4 != 8/2
False

# Augmented assignment
>>> x = 20
>>> x *= 4
>>> x
80
>>> x %= 11
>>> x
3

Experiment 6: Integer operators.

The example program to determine whether a given year is a leap year computes with 
integer values. Once the year in question has been read in, the program examines whether 
the given integer value is a multiple of 4, a multiple of 100 and a multiple of 400. As illustrated 
in Example 1, the program uses the modulo operator (%) for that purpose. In particular, the 
program checks whether the remainder obtained by dividing the given year by 4 is equal to 0. 
It then does the same for divisions of the given year by 100 and by 400.

The result of each of these comparisons is stored respectively in the variables is_4_multiple, 
is_100_multiple and is_400_multiple. Each of the variables is_4_multiple, is_100_multiple 
and is_400_multiple stores one of the Boolean values True or False. Note once more how well 
chosen names for variables improve the readability of our programs. Imagine for a moment how 
the program would look if we had chosen names such as c1, c2 and c3 for these variables. Readers 
would then have to figure out themselves what kind of value is stored in each of these variables.

1.7.1 Boolean type

The type bool  has just two possible values: True and False. It is named after the English 
mathematician George Boole, who worked out the basic ingredients of what is now called the 
Boolean logic. In retrospect, George Boole is regarded as the founder of the field of digital 
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electronics. Expressions involving Boolean values are used to steer the order in which state-
ments are executed based on logical expressions or predicates. The comparison operators 
discussed in section 1.7 yield Boolean values. However, Boolean values can also be assigned to 
variables, as illustrated in Experiment 7 below.

The conjunction of two Boolean expressions is denoted by the binary operator and. A con-
junction yields True if and only if both the expression on the left and the expression on the right 
evaluate to True. The disjunction of two Boolean expressions is denoted by the binary operator 
or. A disjunction yields False if and only if both the expression on the left and the expression on 
the right evaluate to False. Finally, the unary operator not denotes the negation of a Boolean 
expression. A negation yields False if the expression to which it is applied evaluates to True, 
and vice versa.

Boolean operators have a lower priority than comparison operators. This means that 
3<6 and 5>7 is equivalent to (3<6) and (5>7). The Boolean operator not has a higher priority 
than the Boolean operator and. This means that not a and b is equivalent to (not a) and b. 
The Boolean operator and has a higher priority than the Boolean operator or. This means 
that a or b and c is equivalent to a or (b and c). Experiment 7 below shows some ex-
pressions involving Boolean operators.

Python uses the technique of short-circuit evaluation to optimize the evaluation of conjunc-
tions and disjunctions. Whenever the expression on the left of a conjunction evaluates to False, 
Python does not evaluate the expression on the right. The value of the latter expression does 
not change the end result of the conjunction, which by definition is False in this case. Similarly, 
Python does not evaluate the right-hand side of a disjunction if the evaluation of its left-hand 
side has yielded True. In that case, the end result of the disjunction is True. Apart from being 
more efficient, short-circuit evaluation also makes life easier for the Python programmer. It 
can avoid runtime errors, as illustrated by the expression (x == 0) or (y//x >= 0) in Exper-
iment 7 below. If the variable x were 0, evaluation of the right-hand side would result in division 
by 0. Because of short-circuit evaluation, the right-hand side is not evaluated in this case.

Lots of programs need to check whether a value is in a particular range. We can write such 
conditions using the comparison operators that we discussed in the previous section combined 
with a conjunction. In general, the expression (a <= x) and (x <= b) checks whether the val-
ue of the variable x is in the range a..b. We can write such expressions in a more compact way 
by chaining comparison operators. Specifically, the expression (a <= x <= b) checks whether 
the variable x is in the range a..b. It is completely equivalent to the more verbose expression 
involving the operator and. Experiment 7 below shows a more concrete example.

Integer values and Boolean values can be mixed. The Boolean values True and False are 
interpreted respectively as the integer values 1 and 0 in any context in which an integer value 
is expected. Experiment 7 below illustrates this with an integer addition that takes True on the 
left and a multiplication involving False on the right. The reverse is also true. Any non-zero in-
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teger value is interpreted as True in any context in which a Boolean value is expected. Similarly, 
the integer value 0 is interpreted as False in any context in which a Boolean value is expected. 
Experiment 7 below illustrates this with a conjunction involving the integer 42 on the left, and 
with a disjunction involving 0 on the left. If we had supplied the integer values on the right of the 
Boolean operators, they would have returned them as a result. Indeed, the Boolean operators 
and and or always return the value of the operand that has been evaluated last. For example, 
the expression True and 42 returns 42:

# Boolean literals
>>> x = True
>>> x
True

# Conjunction
>>> x = True
>>> x and (5<6)
True

# Disjunction
>>> y = False
>>> y or (3!=4)
True

# Negation
>>> x = True
>>> not x
False

# Short-circuit evaluation
>>> x = 0
>>> y =24
>>> (x==0) or (y/x >= 0)
True

# Chaining comparison operators
>>> x = 20
>>> -50 <= x <= 50
True

# Equivalence with integer numbers
>>> True + 12
13
>>> 42*False
0
>>> 42 and True
True
>>> 0 or False
False

Experiment 7: Boolean operators.
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As noted above, the program shown in Example 1 to check whether a given year is a leap 
year stores the results of examining respectively whether the given year is a multiple of 4, a 
multiple of 100 and a multiple of 400 in Boolean variables. The expressions on the right of each 
of these assignments are comparisons checking whether the remainder in question is equal 
to 0. The if statement following those assignments also uses a Boolean expression. We discuss 
the full semantics of if statements in section 1.8.2.

The Boolean expression following the keyword if first of all uses the operator and to check 
that the year in question is both a multiple of 4 and not a multiple of 100 or a multiple of 400. 
The right-hand side of that rather complex condition is expressed using the Boolean operators 
not and or. Because of short-circuit evaluation, the right-hand side of the operator and is not 
evaluated if the year in question is not a multiple of 4. For the same reason, the right-hand side 
of the operator or is not evaluated if the year in question is not a multiple of 100.

Note that the entire Boolean expression has not been written on a single line. There is no 
hard limit on the length of a line in a Python program. However, common sense dictates a 
practical limit of 80 characters, because lines with more characters do not always print prop-
erly on paper. As illustrated by the condition, we can use the so-called continuation character 
(\) to spread expressions and other ingredients of Python programs over several lines. Python 
further allows parenthesized expressions to be spread over several lines, provided the line 
break is in between the parentheses. Experiment 8 below illustrates this functionality with a 
simple addition. The addition itself is between parentheses, and its right-hand side starts on a 
new line. The bottom part of the experiment shows that line breaks are only allowed inside pa-
renthesized expressions. The idea of the example was to continue the expression on the next 
line to give the right-hand side of the addition. However, the Python interpreter signals an error 
after having processed the first line. Because the expression is not between parentheses, it 
must all be given on a single line:

>>> (3+
4)
7
>>> 3+
SyntaxError: invalid syntax

Experiment 8: Spreading expressions over several lines.

1.8 Selection
The programs we have been writing so far merely consist of a sequence of instructions. 

The instructions of such programs are executed one by one in the order in which they occur. 
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We often want to influence the sequence of instructions that our programs execute. The order 
in which the instructions of a program are executed is called the control flow. Programming 
languages offer constructs to influence that flow. This section discusses the if statement as 
one of Python’s statements to influence the control flow. Programming languages often use 
the so-called Backus-Naur Form (BNF) or some extended form of it to clarify the syntax – the 
spelling – of their constructs. We therefore start this section with a short introduction to the 
Backus-Naur Form and illustrate it with the syntax of assignment statements and expressions 
that we have discussed in previous sections.

1.8.1 Backus-Naur Form

John Backus was one of the first to propose a notation to describe the syntax of program-
ming languages. He introduced it in 1959 to clarify the syntax of the programming language 
Algol 58. In the early sixties, Peter Naur simplified it to a notation that is now commonly known 
as the Backus-Naur Form. A BNF specification consists of a number of rules. Each BNF rule 
describes a particular construct of the programming language in question. Such a rule con-
sists of a nonterminal symbol on the left and a BNF expression on the right. The parts are 
separated from each other by means of the BNF define operator (::=) Because we do not 
always discuss the full semantics of Python constructs all at once, we often need to extend 
the rule defining some nonterminal symbol in later chapters. In order to distinguish the final 
definition of a nonterminal symbol from a temporary definition, we use the BNF temporary 
define operator (~~=) for temporary definitions of nonterminal symbols that are completed 
later in the book.

In their simplest form, BNF Expressions are sequences of terminal symbols and nonter-
minal symbols. Nonterminal symbols are always enclosed in angular brackets (<…>). Terminal 
symbols are usually written as such. However, from time to time, the spelling of a terminal sym-
bol can be confused with with BNF symbols. For that reason, terminal symbols may also be en-
closed in double quotes. Syntax rule 1 below describes the syntax of a simple assignment state-
ment in Python as discussed in section 1.5. The BNF rule temporarily defines the nonterminal 
<Assignment Statement> as a construct that starts with the name of a variable, followed by 
the assignment operator =, and terminated with an expression. The symbols variable_name 
and = are terminal symbols. The spelling of the expression on the right of an assignment must 
satisfy the BNF rule defining the nonterminal symbol <Expression>. Because we have used the 
temporary operator ~~=, a BNF rule defining the syntax of more extended forms of assignment 
statements will follow in later chapters:

<Assignment Statement> ~~=
    variable_name = <Expression>

Syntax rule 1: Assignment statement.
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BNF expressions can use operators to describe more complex constructs. The BNF choice 
operator | is available to describe alternatives. A BNF expression in the form e1 | e2 | … | en 
specifies that the spelling must be according to one of the BNF expressions e1, e2, …, en. Syntax 
rule 2 below shows the final definition of the nonterminal symbol <Statement>. It specifies 
that a statement in Python is either a simple statement or a compound statement. A simple 
statement is temporarily defined as either an assignment statement or an augmented as-
signment statement. We introduce other kinds of simple statements later on. The BNF choice 
operator may also be used in subexpressions as illustrated in the definition of the nontermi-
nal <Augmented Assignment Statement>. It enumerates all possible augmented assignment 
operators in a BNF subexpression that involves the choice operator. BNF subexpressions are 
typically enclosed between parentheses:

<Statement> ::=
    <Simple Statement>
  | <Compound Statement>

<Simple Statement> ~~=
    <Assignment Statement>
  | <Augmented Assignment Statement>

<Augmented Assignment Statement> ~~=
  variable_name
    ( += | -= | *= | /= | //= | %= | **= ) <Expression>

Syntax rule 2: Statement, Simple Statement and Augmented Assignment Statement.

The BNF iterative operators * and + are used to specify that a certain component may 
appear a number of times in succession. The BNF expression e* specifies that the component 
described by the subexpression e can occur an arbitrary number of times in succession. The 
BNF expression e+ specifies that the component described by the subexpression e must oc-
cur at least once and may be repeated an arbitrary number of times immediately afterwards. 
Syntax rule 3 below describes the syntax of expressions. A numeric expression consists of a 
multiplicative term followed by zero or more sequences of an additive operator and another 
multiplicative term. In the same way, a multiplicative term consists of a unary term followed 
by zero or more sequences of a unary operator and another unary term. Note that the BNF 
rules for numeric expressions fully describe the priority rules that Python imposes on numeric 
operators. For example, the expression a*b+c/d can only be interpreted as the multiplicative 
term a*b followed by the operator + followed by the multiplicative term c/d.

BNF Expressions may also enclose subexpressions in square brackets. A squared BNF 
subexpression [e] denotes an optional component. In Syntax rule 3 below, the BNF rule de-
scribing power terms uses this facility to specify that a power term consists of a basic numeric 
term optionally followed by the power operator and a unary term. In this way, the definition 
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reflects the right-to-left association of the power operator **. Indeed, an expression in the 
form a**-b**c must be interpreted as the basic numeric expression a followed by the power 
operator ** followed by the unary term -b**c.

Finally, the BNF rule defining basic numeric terms in Syntax rule 3 below needs some further 
explanation. Specifically, it illustrates the need to enclose terminal symbols in double quotes. 
Indeed, one of the alternatives for a basic numeric term is a numeric expression between pa-
rentheses. If we were to have written this alternative simply as ( <Numeric Expression> ) 
instead of “(“ <Numeric Expression> “)”, the parentheses would be interpreted as BNF pa-
rentheses enclosing the BNF subexpression <Numeric Expression>, rather than as terminal 
symbols enclosing a numeric expression in Python. For similar reasons, the terminal symbols 
+ and * are enclosed in double quotes in the BNF rules describing respectively numeric expres-
sions and multiplicative terms:

<Expression> ~~=
    <Numeric Expression>
  | <Boolean Expression>

<Numeric Expression> ::=
  <Multiplicative Term>
    ( ( “+” | – ) <Multiplicative Term> )*

<Multiplicative Term> ::=
  <Unary Term> ( ( “*” | / | // | % ) <Unary Term> )*

<Unary Term> ::=
  ( + | – )* <Power Term>

<Power Term> ::=
  <Basic Numeric Term> [ ** <Unary Term> ]

<Basic Numeric Term> ~~=
    integer_literal
  | floating_point_literal
  | variable_name
  | “(“ <Numeric Expression> “)”

<Boolean Expression> ::=
  <Conjunctive Term> ( or <Conjunctive Term> )*

<Conjunctive Term > ::=
  <Negated Term> ( and <Negated Term> )*

<Negated Term > ::=
  [ not ] <Basic Boolean Term>
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<Basic Boolean Term> ~~=
  | True
  | False
  | variable_name
  | “(“ <Boolean Expression> “)”
  | <Comparison Expression>

<Comparison Expression> ::=
  <Expression> ( <Comparison Operator> <Expression> )+

<Comparison Operator> ~~=
  == |!= | <> | < | <= | > | >=

Syntax rule 3: Expression, Numeric Expression and Boolean Expression.

1.8.2 The if statement

An if statement in Python serves to state that a group of statements may only be executed if 
a particular, stated condition is satisfied. Syntax rule 4 below states that an if statement always 
starts with the keyword if, followed by a Boolean expression, a colon and a statement group. 
That part of an if statement is often called its if part or its then part. The execution of an if state-
ment starts with the evaluation of the Boolean expression of its if part. If the resulting value is 
True, the statement group of that then part is executed. Hereafter, execution proceeds with the 
statement following the entire if statement.

Syntax rule 4 below further specifies that the if part of an if statement may be followed by 
an arbitrary number of elif parts, short for else-if parts. An elif part consists of the keyword 
elif followed by a Boolean expression, a colon and a statement group. If the evaluation of the 
Boolean expression following the keyword if has yielded False, execution of the if statement 
proceeds with the evaluation of the Boolean expression that is part of the first elif part, if avail-
able. If the resulting value is True, the statement group following that Boolean expression is 
executed. Execution then proceeds with the statement following the entire if statement.

If the evaluation of the Boolean expression following the first occurrence of the keyword 
elif has yielded False, execution of the if statement proceeds with the evaluation of the Boolean 
expression that is part of the next elif part. The statement group associated with that elif part is 
executed if the evaluation of its Boolean expression yields True. In this way, execution of the if 
statement steps from one elif part to the next elif part until either the statement group of an elif 
part is selected for execution, or until the evaluation of all Boolean expressions of all elif parts 
has yielded False.

The final component of an if statement is an optional else part at the end. According to 
Syntax rule 4 below, that part consists of the keyword else immediately followed by a colon 
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and a statement group. No Boolean expression is involved in this part. If the evaluation of the 
Boolean expressions of the then part and of all the elif parts of an if statement has yielded 
False, the statement group of its else part, if any, is executed. If the if statement has no else 
part, execution immediately proceeds with the statement following the entire if statement:

<If Statement> ::=
    if <Boolean Expression> :
      <Statement Group>
  ( elif <Boolean Expression> :
      <Statement Group> ) *
  [ else:
      <Statement Group> ]

<Statement Group> ::=
  <Statement> +

Syntax rule 4: If Statement and Statement Group

The program shown in Example 1 to check whether a given year is a leap year uses an if 
statement. That if statement only consists of a then part and of an else part. If the condition of 
the then part evaluates to True, the program prints out that the given year is a leap year. Oth-
erwise, the else part is executed. In that case, the program prints out that the given year is not 
a leap year. The example that we develop in Example 2 involves a more extended if statement. 
It also involves some elif parts.

So far, we have been rather vague about the notion of a statement group. According 
to Syntax rule 4 above, a statement group is a non-empty sequence of statements. Python 
uses indentation to delineate statement groups. In computer science, indentation is defined 
as the rightward displacement of programming text to separate it clearly from surround-
ing text. Programming languages have been using indentation for a long time to improve the 
readability of their programs. Indentation makes the structure of the program stand out. In 
 Python, we are free to use spaces or tabs to indent code. However, we must be consistent in 
our choice throughout the program text. Because tabs may lead to problems when we send 
our program to a printer or to some other machine, we recommend to use spaces to indent 
Python code. In Example 1, the statement group that belongs to the then part and the else 
part of the if statement just consists of a single statement. They are both shifted to the right 
by means of two spaces. In this way, the different alternatives belonging to the if statement 
clearly stand out.

In most programming languages, indentation serves no other purpose than to improve 
the readability of their programs. These languages use brackets such as {…} or keywords 
such as begin and end, or do and od to delineate statement groups. Python goes one step 
further than most programming languages. It uses indentation to delineate statement 
groups. The language demands that statement groups such as those belonging to the dif-
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ferent parts of an if statement are indented to the right. Moreover, each singular statement 
in a statement group must be indented to the right over the same distance. We are free to 
choose the number of spaces we use for each level of indentation. Common values are 2 or 
4 spaces. We use two spaces to indent all code fragments in this book. In Example 1, each 
invocation of the built-in function print is indented to the right. Those statements are there-
fore the first statement of a statement group. Because none of them is followed by another 
statement indented to the right over the same distance, both statement groups consist of 
only one statement.

1.9 Output
In section 1.4, we discussed the semantics of the built-in function input to read data that is 

supplied by the end-user. That data is read from the standard input stream. Similarly, Python 
provides the built-in function print to display results to end-users. The resulting data is written 
to the standard output stream. The function involves an arbitrary sequence of expressions 
separated by commas. It evaluates all expressions in succession, and prints their values to the 
standard output stream. By default, successive values displayed to the standard output stream 
are separated from each other by a space. After all values have been written, the standard 
output stream turns to a new line unless specified otherwise. Experiment 9 below starts with 
a simple example of an invocation of the built-in function print.

We may want to use other symbols than a simple space to separate successive values 
printed to the standard output stream. In that case, we must use a so-called keyword argu-
ment named sep to which we assign the string that must be used as a separator between 
all the values printed out as a result of executing the built-in function print. We explain the 
semantics of keyword arguments in more detail in 5.3. The second example in Experiment 9 
below illustrates the use of a self-supplied separator. This time the string “John’s score” is 
separated from the integer number 42 by means of a colon followed by a space.

After the invocation of the built-in function print has written all the values, it turns to a 
new line unless we supply another symbol to follow the output. This time, we must use a key-
word argument named end to which we assign the string that must follow the last printed 
value. By default, that string is equal to “\n”, which stands for a new line. The last example in 
Experiment 9 below illustrates how to supply another sequence of characters following the 
last printed value. This time, we use two successive invocations of the built-in function print 
to print the string “John’s score: 42” on a single line. The first invocation specifies that 
the string “: “ must follow “John’s score”. The second invocation continues printing the 
integer number 42 on the same line. Because that invocation does not involve a self-supplied 



28 Chapter 1: Integer Arithmetic

terminating string, later invocations of the built-in function print will start printing on the 
next line:

>>> print(“John’s score:”,42)
John’s score: 42

>>> print(“John’s score”,42,sep=”: “)
John’s score: 42

print(“John’s score”,end=”: “)
print(42)
John’s score: 42

Experiment 9: The built-in function print.

The program to check whether a given year is a leap year terminates with some invoca-
tions of the built-in function print. As illustrated in Example 1, both invocations involve two 
strings that are printed as such to the standard output stream. The given year is printed be-
tween the strings. Whenever something other than a string is to be printed to the standard 
output stream, a textual representation of that thing is written out. That textual representation 
is obtained from the built-in function str. In the example, the latter function is invoked with the 
given year, and returns a textual representation of the given integer number. We can influence 
the way all these strings are eventually written out by supplying formatting information. For 
example, we could say that the given year must always be six characters long. Spaces (or oth-
er symbols that we specify) would then be added in front of the textual representation of the 
given year. However, we do not further discuss the formatting of output in this book.

The code snippet below shows an alternative for the last part of the program in Example 1. 
This time, the common parts of both invocations of the built-in function print have been fac-
tored out in a single invocation that precedes the if statement. The example illustrates the use 
of a self-defined ending symbol after the last expression in an invocation of the built-in func-
tion print. Because of the comma after the year in the invocation of the built-in function print 
preceding the if statement, the invocation of the built-in function prints in the then part and in 
the else part of the if statement continues printing on the same line:

print(“The year”, year, end =” “)
if is_4_multiple and \
     ( (not is_100_multiple) or is_400_multiple):
  print(“is a leap year!”)
else:
  print(“is not a leap year!”)


